

1.8V CMOS 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

IDT74AUC16374

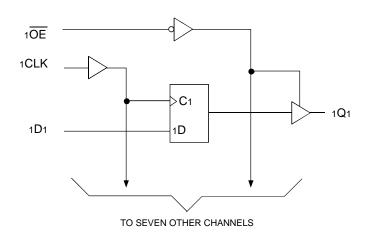
FFATURFS:

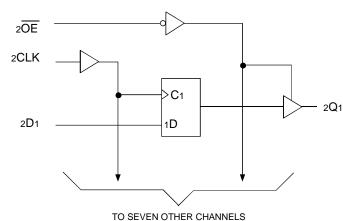
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- 1.8V Optimized
- 0.8V to 2.7V Operating Range
- · Inputs/outputs tolerant up to 3.6V
- Output drivers: ±9mA @ 2.3V
- · Supports hot insertion
- · Available in TSSOP, TVSOP, and VFBGA packages

APPLICATIONS:

- · high performance, low voltage communications systems
- · high performance, low voltage computing systems

DESCRIPTION:


This 16-bit edge-triggered D-type flip-flop is built using advanced CMOS technology. The AUC16374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels at the data (D) inputs.

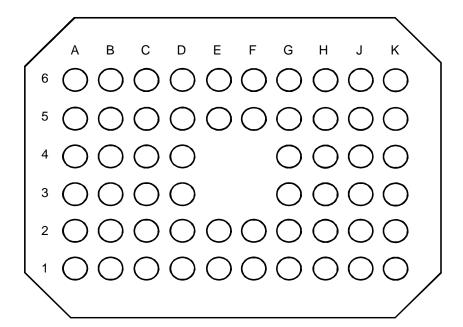

 $\overline{\text{OE}}$ can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. $\overline{\text{OE}}$ does not affect the internal operation of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vod through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

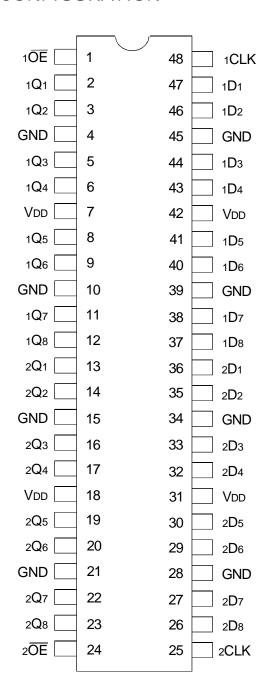
FUNCTIONAL BLOCK DIAGRAM

 $The \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, Technology, \, Inc. \, In the \, IDT logo \, is \, a \, registered \, Technology, \, In the \, IDT logo \, is \, a \, registered \, Technology, \, In the \, IDT logo \, is \, a \, registered \, Technology, \, In the \, IDT logo \, IDT l$


PINOUT CONFIGURATION

6	1CLK	1D2	1D4	1D6	1D8	2D1	2D3	2D5	2D7	2CLK
5	NC	1D1	1D3	1D5	1D7	2D2	2D4	2D6	2D8	NC
4	NC	GND	Vdd	GND			GND	VDD	GND	NC
3	NC	GND	Vdd	GND			GND	VDD	GND	NC
2	NC	1Q1	1Q3	1Q5	1Q7	2Q2	2Q4	2Q6	2Q8	NC
1	1 OE	1Q2	1Q4	1Q6	1Q8	2Q1	2Q3	2Q5	2Q7	2 OE
ı	Α	В	С	D	Е	F	G	Н	J	К
	VFBGA									

NOTE:


NC = No Internal Connection

56 BALL VFBGA PACKAGE LAYOUT

TOP VIEW

PIN CONFIGURATION

TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
x D x Data Inputs		
xCLK Clock Inputs		
x Q x 3-State Outputs		
x \overline{OE} 3-State Output Enable Inputs (Active LOW)		

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +3.6	V
	(all input and VDD terminals)		
VTERM	Terminal Voltage with Respect to GND	-0.5 to +3.6	V
	(any I/O or Output terminals in high-		
	impedance or power-off state)		
Tstg	Storage Temperature	-65 to +150	°C
lout	Continuous DC Output Current	±20	mA
lıĸ	Continuous Clamp Current,	±50	mA
	Vi < 0, or Vi > VDD		
Іок	Continuous Clamp Current, Vo < 0	-50	mA
IDD	Continuous Current through	±100	mA
Iss	each VDD or GND		

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (Ta = +25°C, F = 1.0MHz, VDD = 2.5V)

Symbol	Parameter	Conditions	Тур.	Max.	Unit
CIN ⁽¹⁾	Input Capacitance	VIN = 0V	3		pF
Cout ⁽²⁾	Output Capacitance	Vout = 0V	5		pF
CI ⁽³⁾	Input Port Capacitance	VIN = 0V	3		pF

NOTES:

- 1. Applies to Control Inputs.
- 2. Applies to Data Outputs.
- 3. Applies to Data Inputs.

FUNCTION TABLE (EACH FLIP-FLOP)(1)

	Inputs	Output				
х ОЕ	xCLK	хDх	хQх			
L	↑	Н	Н			
L	↑	L	L			
L	H or L	Х	Q ⁽²⁾			
Н	Х	Х	Z			

NOTES:

- 1. H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Don't Care
- Z = High-Impedance
- ↑ = LOW-to-HIGH Transition
- 2. Level of Q before the indicated steady-state conditions were established.

RECOMMENDED OPERATING CHARACTERISTICS(1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vdd	Supply Voltage		0.8	2.7	V
		VDD = 0.8V	VDD	_	
		V _{DD} = 1.1V to 1.3V	0.65 x Vdd	_]
VIH	Input HIGH Voltage Level	V _{DD} = 1.4V to 1.6V	0.65 x Vdd	_	V
		V _{DD} = 1.65V to 1.95V	0.65 x Vdd	_]
		V _{DD} = 2.3V to 2.7V	1.7	_	1
		V _{DD} = 0.8V	_	0	
		V _{DD} = 1.1V to 1.3V	_	0.35 x Vdd	1
VIL	Input LOW Voltage Level	VDD = 1.4V to 1.6V	_	0.35 x Vdd	V
		V _{DD} = 1.65V to 1.95V	_	0.35 x Vdd]
		V _{DD} = 2.3V to 2.7V	_	0.7	1
Vı	Input Voltage		0	2.7	V
Vo	Output Voltage	Active State	0	Vdd	V
		3-State	0	2.7]
		V _{DD} = 0.8V	_	-0.7	
		V _{DD} = 1.1V	_	-3	
Іон	HIGH Level Output Current	VDD = 1.4V	_	-5	mA
		VDD = 1.65V	_	-8]
		VDD = 2.3V	_	-9	1
		VDD = 0.8V	_	0.7	
		V _{DD} = 1.1V	_	3	1
lol	LOW Level Output Current	VDD = 1.4V	_	5	mA
		VDD = 1.65V	_	8	
		VDD = 2.3V	_	9	
Δt/Δν	Input Transition Rise or Fall Time		_	20	ns/V
TA	Operating Free-Air Temperature		-40	+85	°C

NOTE:

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1)

Following Conditions Apply Unless Otherwise Specified:

Operating Conditions: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
lін	Input HIGH or LOW Current	VDD = 2.7V, VI = VDD or GNI	_	_	±5	μA	
lıL	All Inputs						
loff	Input/Output Power Off Leakage	$VDD = 0V$, VIN or $VO \le 2.7V$		_	_	±10	μA
lozh	High Impedance Output Current	VDD = 2.7V	Vo = Vdd	_		±10	μA
lozl	(3-State Output Pins)		Vo = GND	_	_	±10	
IDDL	Quiescent Power Supply Current	VDD = 0.8V to 2.7V		_	_	20	μΑ
IDDH		VIN = GND or VDD					
IDDZ							

NOTE

^{1.} All unused inputs of the device must be held at VDD or GND to ensure proper operation.

^{1.} All unused inputs of the device must be held at VDD or GND to ensure proper operation.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
Vон	Output HIGH Voltage	VDD = 0.8V - 2.7V	IOH = -100μA	VDD - 0.1	_	_	
		VDD = 0.8V	Iон = -0.7mA	_	0.55	_	
		VDD = 1.1V ⁽²⁾	Iон = -3mA	0.8		_	V
		$VDD = 1.4V^{(3)}$	Iон = -5mA	1	_	_	
		$VDD = 1.65V^{(4)}$	Iон = -8mA	1.2	_	_	
		$VDD = 2.3V^{(5)}$	Iон = -9mA	1.8		_	
Vol	Output LOW Voltage	VDD = 0.8V - 2.7V	Ioн = 100μA	_	_	0.2	
		VDD = 0.8V	IoL = 0.7mA	_	0.25	_	
		$VDD = 1.1V^{(2)}$	IoL = 3mA	_		0.3	V
		$VDD = 1.4V^{(3)}$	IoL = 5mA	_	_	0.4	
		$VDD = 1.65V^{(4)}$	IoL = 8mA	_	_	0.45	
		$VDD = 2.3V^{(5)}$	IOH = 9mA	_		0.6	

NOTES:

- 1. VIL and VIH must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS table for the appropriate VDD range. TA = -40°C to +85°C.
- 2. Demonstrates operation for nominal VDD = 1.2V.
- 3. Demonstrates operation for nominal VDD = 1.5V.
- 4. Demonstrates operation for nominal VDD = 1.8V.
- 5. Demonstrates operation for nominal VDD = 2.5V.

OPERATING CHARACTERISTICS, TA = 25°C(1)

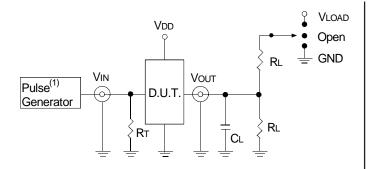
Symbol	Parameter	Test Conditions	VDD = 0.8V	VDD = 1.2V	VDD = 1.5V	VDD = 1.8V	VDD = 2.5V	Unit
CPD	Power Dissipation Capacitance ⁽²⁾	1 fdata = 5MHz	24	24	24.1	26.2	31.2	рF
(each	Outputs Enabled,	1 fclк = 10MHz						
output)	1 Output Switching	1 fouт = 5MHz						
		\overline{OE} = GND, CL = 0pF						
CPD(Z)	Power Dissipation Capacitance	1 fdata = 5MHz	7.5	7.5	8	9.4	13.2	рF
	Outputs Disabled,	1 fclк = 10MHz						
	1 Clock and 1 Data Switching	fouт = not switching						
		$\overline{OE} = V_{DD}$, $C_L = 0pF$						
CPD	Power Dissipation Capacitance(3)	1 fdata = 0MHz	13.8	13.8	14	14.7	17.5	рF
(each	Outputs Disabled,	1 fclк = 10MHz						
clock)	Clock Only Switching	fouт = not switching						
		$\overline{OE} = Vdd$, $CL = 0pF$						

NOTES:

- 1. Total device CPD for multiple (x) outputs switching and (n) clocks inputs switching = $\{x * CPD (each output)\} + \{n CPD (each clock)\}$.
- 2. CPD (each output). This is the CPD for each data bit where each input and output circuit is operating at 5MHz. The clock frequency is 10MHz and the numbers shown are minus the IDD component.
- 3. CPD (each clock); this is the CPD for each clock circuit, operating at 10MHz.

SWITCHING CHARACTERISTICS(1)

		VDD = 0.8V	VDD = 1.2	2V±0.1V	VDD = 1.	5V±0.1V	VDD	= 1.8V±0.	.15V	VDD = 2.	5V±0.2V	
Symbol	Parameter	Тур.	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit
fmax		85	_	250	_	250	_	_	250	_	250	MHz
tplh	Propagation Delay	7.3	1	4.5	0.8	2.9	0.7	1.5	2.8	0.7	2.2	ns
tphl	xCLK to xQx											
tpzh	Output Enable Time	7	1.2	5.3	0.8	3.6	0.8	1.5	2.9	0.7	2.2	ns
tpzl	xOE to xQx											
tphz	Output Disable Time	8.2	2	7.1	1	4.8	1.4	2.7	4.5	0.7	2.2	ns
tplz	$x\overline{OE}$ to xQx											
fclock	Clock Frequency	85	250	_	250	-	250	_	_	250		MHz
tsu	Set-up Time, Data before CLK↑	1.4	1	_	1	_	1	_	_	1	_	ns
tH	Hold Time, Data after CLK↑	0.1	0.9	_	0.9	_	0.9	_	_	0.9	_	ns
tw	Pulse Duration,	5.9	1.9	_	1.9	_	1.9	_	_	1.9	_	ns
	CLK HIGH or LOW											


NOTE:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to +85°C.

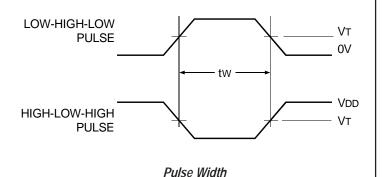
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS(1)

Symbol	VDD = 0.8V	VDD = 1.2V±0.1V	VDD = 1.5V±0.1V	VDD = 1.8V±0.15V	$V_{DD} = 2.5V \pm 0.2V$	Unit
VLOAD	2xVdd	2xVDD	2xVdd	2xVdd	2xVdd	V
VT	VDD/2	VDD/2	VDD/2	VDD/2	VDD/2	V
VLZ	100	100	100	150	150	mV
VHZ	100	100	100	150	150	mV
RL	2	2	2	1	0.5	ΚΩ
CL	15	15	15	30	30	pF

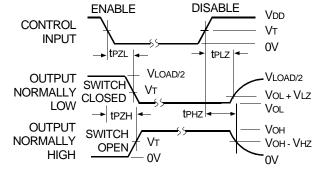
Test Circuits for All Outputs

DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

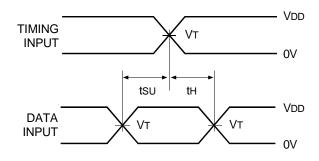
 $\mathsf{R} \tau = \mathsf{Termination}$ resistance: should be equal to $\mathsf{Z} \mathsf{O} \mathsf{U} \tau$ of the Pulse Generator. NOTE :

1. Pulse Generator for All Pulses: Rate \leq 10MHz; slew rate \geq 1V/ns.

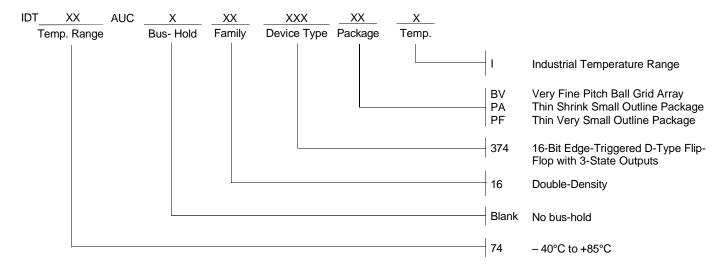

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

VDD SAME PHASE Vт INPUT TRANSITION 0V tplH **t**PHL Vон **OUTPUT** Vт Vol tPLH tPHL V_{DD} OPPOSITE PHASE Vт INPUT TRANSITION 0V


Propagation Delay

NOTE:


 ${\it 1. \ Diagram\ shown\ for\ input\ Control\ Enable-LOW\ and\ input\ Control\ Disable-HIGH.}$

Enable and Disable Times

Setup and Hold Times

ORDERING INFORMATION

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459